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[1] An initial evaluation of the Models-3 Community Multiscale Air Quality (CMAQ)
model aerosol component reveals CMAQ’s varying ability to simulate observed visibility
indices and aerosol species concentrations. The visibility evaluation, using National
Weather Service observations from 139 airports for 11–15 July 1995, shows that CMAQ
reasonably captured the general spatial and temporal patterns of visibility degradation,
including major gradients, maxima and minima. However, CMAQ’s two visibility
prediction methods, Mie theory approximation and mass reconstruction, both underpredict
visibility degradation (i.e., overpredict visibility). The mean bias, normalized mean bias
(NMB), mean error and normalized mean error (NME) for the Mie calculations are
�5.9 dv, �21.7%, 7.0 dv and 25.4%, respectively. For the reconstruction simulations,
these statistics are �9.8 dv, �35.5%, 10.0 dv and 36.2%, respectively. Most simulated
values (�90% Mie and �85% reconstruction) fall within a factor of two of the
observations, although r2 = 0.25 (Mie) and r2 = 0.24 (reconstruction). The speciated
aerosol evaluation uses observations of sulfate, nitrate, PM2.5, PM10 and organic carbon
obtained from 18 stations of the Interagency Monitoring of Protected Visual Environments
(IMPROVE) network in June 1995. This evaluation reveals that, with the exception of
sulfate (mean bias: 0.15 mg/m3, NMB: 3.1%), the model consistently underpredicts aerosol
concentrations of nitrate (�0.10 mg/m3, �33.1%), PM2.5 (�3.9 mg/m3, �30.1%), PM10

(�5.66 mg/m3, �29.2%) and organic carbon (�0.78 mg/m3, �33.7%). Sulfate was
simulated best by the model (r2 = 0.63, mean error = 1.75 mg/m3, NME = 36.2%),
followed by PM2.5 (0.55, 5.00 mg/m3, 38.5%), organic carbon (0.25, 0.94 mg/m3, 40.6%),
PM10 (0.13, 9.85 mg/m

3, 50.8%) and nitrate (0.01, 0.33 mg/m3, 104.3%). Except for nitrate,
75–80% of simulated concentrations fall within a factor of two of the IMPROVE
observations. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles

(0345, 4801); 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 0365

Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368

Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry;
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1. Introduction

[2] Ambient air concentrations of particulate matter
(atmospheric suspensions of solid or liquid materials, i.e.,
aerosols) continue to be a major concern for the U.S.

Environmental Protection Agency (EPA). High particulate
matter (PM) concentrations are associated not only with
adverse human health effects, including increased morbidity
and mortality arising from altered respiratory and cardio-
vascular function, but they also contribute to acid precip-
itation, regional climate change and visibility degradation
[U.S. Environmental Protection Agency, 1995, 2000b].
[3] The Clean Air Act and its Amendments require the

EPA to establish National Ambient Air Quality Standards
(NAAQS) for PM and to assess current and future air
quality regulations designed to protect human health and
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welfare. In addition, the Regional Haze Rule (Regional
Haze Regulation: Final Rule, 64 Federal Register 126, pp.
35,714–35,774, 1 July 1999) requires States to ‘‘establish
goals and emission reduction strategies for improving
visibility’’ in designated national parks and wilderness
areas. Reliable tools for performing these tasks are air
quality models, such as the EPA’s Models-3 Community
Multiscale Air Quality model (CMAQ) [Byun and Ching,
1999]. CMAQ simulates air concentrations and deposition
of various pollutants (including PM), and also calculates
visibility indices. These model simulations, which can be
conducted on numerous spatial and temporal scales, support
both regulatory assessment by EPA Program Offices, as
well as scientific studies by research institutions.
[4] Within CMAQ is an aerosol component, or module,

designed to simulate the complex processes involving PM.
PM is commonly separated into PM2.5 (particles with
aerodynamic diameters �2.5 mm), also known as fine
particles, and PM10 (aerodynamic diameters �10 mm). Note
that PM10 includes PM2.5; particles with aerodynamic
diameters between 2.5 and 10 mm are called coarse particles.
However, the distinction between fine and coarse particles
depends not just on diameter size, but also on the mode of
particle generation. Fine particles result from combustion
processes and gas-to-particle conversion; coarse particles
are generated from wind-driven mechanical disruption.
[5] PM2.5 and PM10 are not single entities, but consist of

varying mixtures of chemical species, each having its own
emission, transport and deposition characteristics. PM mix-
tures contain primary emissions from industry, power
plants, transportation and biogenic sources, as well as
secondary particles formed by gas-to-particle conversion.
Aerosol species considered within the CMAQ aerosol
module include sulfate, nitrate, ammonium, water, primary
organic aerosols, secondary organic aerosols of both anthro-
pogenic and biogenic origin, elemental carbon, primary
material not otherwise specified and wind-blown dust
[Binkowski and Roselle, 2003]. Using calculated concen-
trations of the above species, the aerosol module determines
visibility degradation by two different methods: (1) an
approximation of Mie extinction of visible light and (2)
an empirical, mass reconstruction approach.
[6] CMAQ, like all models, requires evaluation against

observational data to determine its value to the air quality
and regulatory communities. One such evaluation [Arnold
and Dennis, 2001] assessed CMAQ’s capability for predict-
ing July 1995 ozone concentrations, as well as ozone and
NOx mixing ratios, for the eastern United States. The
authors judged model performance using several endpoints
over a variety of domain scales and using different chemical
mechanisms. Broadly speaking, the model performed well
on days with high observed ozone concentrations, but
performed less well when ozone observations were lower
and when large differences existed between mean and
maximum ozone concentrations. Arnold and Dennis
[2001] propose that this disparity in model performance is
likely due to the model’s inability to correctly predict NOx

concentrations on the low ozone days, a theory borne out by
their preliminary investigations. The reader is referred to
Arnold and Dennis [2001] for further details.
[7] Another evaluation is currently being conducted for

June 1990 and June 1995 air concentrations of sulfate, nitrate

and SO2, as well as wet deposition of sulfate (R. Dennis,
personal communication, 2001). Preliminary analyses show
that CMAQ performed reasonably well; model performance
was very good for sulfate, nitrate predictions were biased
high by about 50%, SO2 predictions were biased high by a
factor of 2 and wet sulfate predictions exhibited no bias.
[8] Unfortunately, evaluating model performance with

respect to PM is currently difficult, due to the lack of
adequate data for comparison. However, two data sets exist
that permit an initial evaluation of the CMAQ aerosol
module. The first consists of National Weather Service
(NWS) hourly visibility observations. In a preliminary
model evaluation [Eder et al., 2000], NWS visibility obser-
vations, covering the eastern half of the United States
during a widespread regional haze episode from 11–15
July 1995, were compared against CMAQ visibility param-
eters calculated using Mie theory. This comparison revealed
general agreement between modeled and observed values.
The second PM data set contains speciated aerosol measure-
ments gathered by the Interagency Monitoring of PRO-
tected Visual Environments (IMPROVE) network.
[9] The present evaluation extends that of Eder et al.

[2000] by comparing IMPROVE observations collected
for the eastern United States during June 1995 against
CMAQ simulation results, and also by evaluating the mass
reconstruction method for calculating July 1995 visibility
parameters.

2. CMAQ Model

2.1. General Description

[10] The CMAQ Eulerian grid model simulates concur-
rently the atmospheric and land processes affecting the
transport, transformation, and deposition of air pollutants
and their precursors, on both regional and urban scales.
CMAQ performs these simulations following first principles
and employs a ‘‘one atmosphere’’ philosophy that tackles
the complex interactions not only among multiple atmos-
pheric pollutants, but also between regional and urban
scales. Pollutants considered within CMAQ include tropo-
spheric ozone, particulate matter, airborne toxics and acidic
and nutrient species. The model also calculates visibility
parameters. A detailed discussion of the CMAQ modeling
system appears in the work of Byun and Ching [1999].

2.2. CMAQ Aerosol Component Overview

[11] The CMAQ aerosol component, described by Bin-
kowski and Roselle [2003] and Binkowski [1999], was
derived from the Regional Particulate Model (RPM) [Bin-
kowski and Shankar, 1995], which is an extension of the
Regional Acid Deposition Model (RADM) [Chang et al.,
1990]. Particle size distributions within CMAQ are repre-
sented as the superposition of three lognormal subdistribu-
tions, or modes.
[12] Two different modes, the Aitken and accumulation

modes, each having variable standard deviations, represent
PM2.5 particles in the CMAQ aerosol component. Aitken
mode particles are those in the mass distribution with
diameters smaller than about 0.1 mm. Accumulation mode
particle diameters range between 0.1 and 2.5 mm. Concep-
tually, the Aitken mode represents fresh particles resulting
from nucleation and/or direct emission. The accumulation
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mode denotes aged particles. Each mode receives primary
emitted material, is subject to wet and dry deposition and
may grow from condensation of gaseous precursors. The
two modes interact through coagulation and the Aitken
mode may grow into the accumulation mode and partially
merge with it. Fine mode species considered within the
CMAQ aerosol component include sulfate, nitrate, ammo-
nium, water, primary organic aerosols, secondary organic
aerosols from both anthropogenic and biogenic origin,
elemental carbon, and primary aerosol material not other-
wise specified.
[13] The coarse particle mode within CMAQ, represent-

ing particles having aerodynamic diameters between 2.5 and
10 mm, consists of wind-blown dust and other large particles
of unspecified origin. The anthropogenic portion of these
particles results mainly from industrial processes. As men-
tioned above for fine particles, coarse mode particles in the
model also undergo wet and dry deposition. Coarse particles
do not interact with fine particles in the current implemen-
tation of the model. A discussion of possible interaction
between the two modes appears in the work of Binkowski
and Roselle [2003]. In addition to calculating concentrations
of the individual species listed previously, the CMAQ
aerosol component also calculates PM2.5, PM10 and coarse
mode concentrations.
[14] Aerosol processes treated within the CMAQ aerosol

component include (1) new particle formation, (2) intermo-
dal and intramodal coagulation, and (3) particle growth by
addition of mass. The aerosol module uses differential
equations to represent conservation of particle number,
surface area, and species mass for each mode and then
solves these equations analytically. Further details on the
aerosol module are given by Binkowski [1999] and Binkow-
ski and Roselle [2003].

2.3. Visibility in the CMAQ Aerosol Component

[15] Visibility has no precise definition, but according to
Malm et al. [1994] ‘‘visibility, in the most general sense,
reduces to understanding the effect that various types of
aerosol and lighting conditions have on the appearance of
landscape features.’’ Fine particles scatter light more effi-
ciently than do larger particles; those particles with diam-
eters between approximately 0.1 and 1.0 mm (included in
PM2.5) are the most effective [Malm, 1999]. In the eastern
United States, the PM2.5 constituents leading to visibility
degradation consist primarily of sulfates, nitrates, carbona-
ceous particles and crustal material [NESCAUM, 2001].
Carbonaceous particles mainly absorb light; the other spe-
cies scatter it. Sulfates and nitrates, being hygroscopic,
change from solid particles to solution droplets when the
relative humidity exceeds 70% [Malm, 1999]. As a result,
these species contribute more to visibility degradation than
do nonhygroscopic particles. For a thorough discussion of
visibility, see Malm [1999].
[16] Visibility observations may take three different

forms, the first two of which are visual range (Vr) and
extinction coefficient (bext). Vr is the farthest distance at
which an observer can discern the outline of a black object
on the horizon. As aerosol loading increases, Vr decreases.
Vr is an intuitive, although subjective, measurement used
primarily for landing aircraft and maneuvering vehicles
safely. The bext measures the attenuation, per unit distance,

of image-forming light between an observer and an object.
This attenuation results from light scattering and/or absorp-
tion by atmospheric particles and gas molecules. These
atmospheric particles may have either anthropogenic or
biogenic origin. As visibility decreases from aerosol load-
ing, bext increases. Vr and bext inversely relate to each other
through the standard form of the Koschmieder equation
[Pitchford and Malm, 1994]:

Vr ¼
3:91

bext
ð1Þ

with Vr in km and bext in km�1.
[17] Unfortunately, neither Vr nor bext is linear with

perceived visual changes resulting from uniform haze.
Therefore, Pitchford and Malm [1994] developed the linear
deciview (dv) scale, defined using either Vr or bext, to
measure visibility. The deciview scale is analogous to the
decibel scale used in acoustics. A measured physical quan-
tity (here the bext) is compared to a reference value (the bext
in a pristine or Rayleigh atmosphere, equal to 0.01 km�1);
the logarithm of this ratio is then multiplied by 10. The
resulting deciview scale changes linearly with respect to
perceived visual changes in the atmosphere [Pitchford and
Malm, 1994]. A visibility measurement of zero dv indicates
a pristine atmosphere; as visibility worsens, deciviews
increase in magnitude. The equation to calculate haziness
on the deciview scale appears below:

haziness dvð Þ ¼ 10 ln
bext

0:01 km�1
; ð2Þ

where bext km
�1

� �
¼ bsp þ 0:01 km�1

� �
: ð3Þ

bsp is the aerosol extinction coefficient and must be adjusted
by 0.01 [km�1], representing molecular scattering, to arrive
at bext.
[18] The CMAQ aerosol component calculates visibility

indices (bext and deciview) using two different methods: an
approximation to Mie theory and a mass reconstruction
technique. These methods are discussed below. The present
evaluation used deciviews for comparison against observa-
tional data.
2.3.1. Mie Theory Approximation
[19] The aerosol bext (km

�1) can be calculated from such
ambient aerosol characteristics as index of refraction, vol-
ume concentration and size distribution and is usually
obtained from a convolution of the size distribution with
the Mie extinction efficiency [Willeke and Brockmann,
1977]. CMAQ calculates the bext using a very efficient
and reasonably accurate approximation to the Mie effi-
ciency [Binkowski, 1999]. In this evaluation, the calculated
bext values are then converted within CMAQ to deciviews,
using equation (2).
2.3.2. Mass Reconstruction Method
[20] CMAQ also contains an empirical approach, based

upon mass reconstruction, for calculating the extinction
coefficient bext. This method, used by the IMPROVE net-
work and documented by Malm et al. [1994] and Malm
[2000], is well-suited to cases in which routine measure-
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ments of aerosol species mass concentrations are available,
but particle size distribution information is not.
[21] The mass reconstructed bext equation used within

CMAQ, a slightly modified version (J. Sisler, personal
communication, 1998) of that from Malm et al. [1994],
appears below:

bsp km�1
� �

¼ 0:003f RHð Þ ammonium½ þ sulfateþ nitrate	
þ 0:004 all organic species½ 	
þ 0:01 elemental carbon½ 	
þ 0:001 unspeciated PM2:5½ 	: ð4Þ

The brackets denote species mass concentration in mg m�3.
The coefficients in equation (4) represent scattering
efficiencies (m2 mg�1), except for light absorbing carbon,
which instead has an absorption efficiency (m2 mg�1). RH
values, averaged for the lowest layer in the vertical profile,
are calculated by the meteorology model referenced in
section 2.4.
[22] Equation (4) normally contains a term associated

with coarse mass concentrations; however, the coarse mass
term is not currently implemented within CMAQ because
uncertainties in wind-blown dust emissions are too large.
Upon determination of better emissions estimates, the
coarse mass term will be reinserted into the visibility
calculations. Again, in the present evaluation, the calculated
bext values were converted within CMAQ to deciviews, for
comparison against observations.

2.4. Model Simulation Characteristics

[23] The model simulations were performed with the 2000
public release version of the Models-3/CMAQ code. For this
evaluation, the modeling domain covers the eastern United
States (see, for example, Figure 1). Each domain grid cell is
36 km by 36 km. The domain’s vertical profile contains 21
layers of varying thickness. Layer 1 is 38 m deep and
subsequent layer depths increase with height. The uppermost
layer is 3 km thick and extends to about 16 km. The
meteorological fields were derived from MM5, the Fifth-
Generation Pennsylvania State University/National Center
for Atmospheric Research (NCAR) Mesoscale Model [Grell
et al., 1994]. MM5 is a three-dimensional, limited area,
primitive-equation model that has undergone continuous
development, improvement and testing for more than 20
years. This state-of-the-science meteorological model is
widely accepted and used by the international scientific
community to simulate a wide variety of mesoscale processes
[Tanrikulu et al., 2000; Seaman, 2000]. Anthropogenic and
biogenic emissions were processed with the Models-3 Emis-
sion Processing and Projection System (MEPPS) [Benjey et
al., 1999], which relies on the National Emissions Inventory
[U.S. Environmental Protection Agency, 2000a].
[24] The simulation period for the visibility data compar-

ison was 6–15 July 1995 and that for the speciated data
comparison was 1–30 June 1995. When the visibility
evaluation was performed, only the July 1995 simulation
results were available for study. By the time the speciated
aerosol evaluation was conducted, the June 1995 simulation
results were accessible. The first few days of each simu-
lation were regarded as ‘‘spin-up’’ time and data from these
days were not used in subsequent analyses. Initial condi-
tions and boundary conditions corresponded to estimates of

clean air concentrations. Effects from the selection of initial
conditions are mitigated by discarding results from the
‘‘spin-up’’ days and the modeling domain is large enough
so that boundary condition effects do not dominate far into
the domain (G. Gipson, personal communication, 2001).
[25] At the time the present evaluation was conducted,

output data were available from only two sets of CMAQ
simulations. The July 1995 model runs, originally con-
ducted to demonstrate CMAQ’s functionality, employed
the Carbon Bond IV (CB-IV) mechanism [Gery et al.,
1989]. The basic CB-IV mechanism in CMAQ contains
36 species and 93 reactions, 11 of which are photolytic
[Gipson and Young, 1999]. Output data from the July 1995
simulations were used for the visibility evaluation. The June
1995 simulations, performed specifically for CMAQ eval-
uation, used version 2 of the Regional Acid Deposition
Model chemical mechanism (RADM2) [Stockwell et al.,
1990]. The basic RADM2 mechanism includes 57 species
and 158 reactions, 21 of which are photolytic [Gipson and
Young, 1999]. Output data from the June 1995 simulations
were used for the speciated aerosol evaluation. Running
CMAQ with CB-IV undoubtedly produces different results
than running the model under the same conditions using
RADM2. Investigating and understanding these differences
would require side-by-side model simulations and addi-
tional analyses that are beyond the scope of this evaluation.

3. Data Used in Evaluation

3.1. NWS Visibility Data

[26] The July 1995 visibility data used to evaluate CMAQ
originated as visual range (Vr) estimates gathered at 174
NWS monitoring stations (mainly airports and military
bases) in the eastern United States (see Figure 1). These
Vr measurements were converted to extinction coefficient
(bext) format at the Center for Air Pollution and Trends
Analysis (CAPITA), an aerosol data repository maintained
at Washington University in St. Louis, Missouri, from

Figure 1. National Weather Service sites (visibility data).
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which we obtained the data (R. Husar, personal communi-
cation, 2000).
[27] Only noon (local time) observations were used, to

assure overhead sunlight and a well-mixed planetary boun-
dary layer. To prevent hydrometeors from biasing the eval-
uation, observations gathered during periods of precipitation
or relative humidities exceeding 90% were discarded. The
bext values were then converted to deciviews according to
equation (2) and compared to model output for noontime
calculations on the corresponding days. CMAQ output was
also filtered to remove predictions biased by rain or by
relative humidities above 90%, thus assuring a more valid
correspondence between model output and observations.
[28] To remove potential complications associated with

boundary effects, data from any NWS monitoring station
lying within 10 grid cells (360 km) of the western boundary

was discarded prior to analysis. Because west-to-east flow
was assumed, data from monitoring sites lying near the
other three boundaries were not excluded in the analysis.
[29] The visibility data used in the present evaluation

originated from human observations of Vr and thus have
limitations. These observations depend upon such factors as
observer visual acuity, number of targets, target configura-
tion, distances to targets, and the physical and optical
properties of the targets. Stations having few targets intro-
duce artificial stratification into the data. For example,
assuming that targets exist at 15 and 20 km from the
observation station, an actual Vr of 18 km would be under-
reported as 15 km. Artificial stratifications of this type affect
the conclusions drawn from comparisons between observa-
tions and model output. Despite these limitations, this data
set has spatial and temporal (i.e., daily measurements)
coverage unmatched in other data sets.

3.2. IMPROVE Speciated Data

[30] For the second phase of the model evaluation, which
focused on the month of June 1995, speciated aerosol data
from the IMPROVE network were used. IMPROVE is a
collaborative monitoring effort governed by a steering
committee composed of representatives from federal,
regional, and state organizations [Pitchford and Scruggs,
2000]. The network was designed to (1) establish current
visibility and aerosol conditions; (2) identify the chemical
species and emission sources responsible for visibility
degradation; and (3) document long-term visibility trends
[Malm, 2000] at over 100 locations nationwide. However,
the majority of IMPROVE sites are located in western
states; as a result, only 18 sites fell within the model
evaluation domain (Figure 2). Additional information con-
cerning these sites can be found in Table 1. All the sites are
rural, except the urban WASH (Washington, D. C.) site.
[31] The IMPROVE speciated data for June 1995 were

downloaded from the CAPITA web site (http://capita.wustl.
edu/CAPITA/DataSets/IMPROVE/impnes.html, 2000).
These data, as well as additional measurement information,
may also be obtained from the IMPROVE web site (vista.

Figure 2. IMPROVE sites (speciated aerosol data).

Table 1. IMPROVE Site Informationa

Station Code Station Location Location State Long, �W Lat, �N Elev, m

ACAD Acadia NP ME 68.308 44.415 129
BOWA Boundary Waters Canoe Area MN 91.950 47.950 524
BRIG Brigantine NWR NJ 74.472 39.475 9
CHAS Chassahowitzka NWR FL 82.567 28.750 2
DOSO Dolly Sods/Otter Creek Wilderness WV 79.205 39.143 1158
GRGU Great Gulf Wilderness NH 71.217 44.300 439
GRSM Great Smoky Mountains NP TN 83.987 35.710 815
JEFF Jefferson/James River Face Wilderness VA 79.433 37.667 299
LYBR Lye Brook Wilderness VT 73.123 43.243 1010
MACA Mammoth Cave NP KY 86.075 37.277 248
MOOS Moosehorn NWR ME 67.283 45.117 76
OKEF Okefenokee NWR GA 82.117 30.765 49
ROMA Cape Romain NWR SC 79.583 33.033 3
SHEN Shenandoah NP VA 78.450 38.543 1098
SHRO Shining Rock Wilderness NC 83.283 35.650 1621
SIPS Sipsey Wilderness AL 87.382 34.358 279
UPBU Upper Buffalo Wilderness AR 93.245 35.880 723
WASH Washington D.C. 77.063 38.932 16
aThe information in Table 1 is from CAPITA (http://capita.wustl.edu/CAPITA/DataSets/IMPROVE/impnes.html, 2000), except for

the elevation data (Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins) (http://
vista.cira.colostate.edu/improve/Data/GraphicViewer/metadata.asp, 2001). NP, National Park; NWR, National Wildlife Refuge.
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cira.colostate.edu/improve) maintained by Colorado State
University.
[32] In 1995, IMPROVE monitors collected 24-hour

integrated samples on Wednesdays and Saturdays (midnight
to midnight, local time (R. Eldred, personal communication,
2000)). Given CMAQ’s one-month simulation period and
IMPROVE’s twice-per-week sampling schedule, a total of
eight days are available for comparison in June: 3, 7, 10, 14,
17, 21, 24 and 28. According to UC-Davis [1995] and
Malm et al. [1994], each sampler consists of four separate
modules (A, B, C and D). Modules A, B, and C collect
PM2.5 particles, while module D collects PM10 particles.
Module A contains a Teflon filter that provides most of the
PM2.5 data. Analysis methods used to measure PM2.5

particles include gravimetric measurements, particle-
induced X-ray emission (PIXE), proton elastic scattering

analysis (PESA) and X-ray fluorescence (XRF). Module B
has a denuder to remove acidic gases, so that filter analysis
will result only in particle concentration measurements. The
nylon filter from Module B is analyzed by ion chromatog-
raphy for nitrate, sulfate, chloride, and nitrite. Module C
collects carbon on tandem quartz filters that are subse-
quently analyzed in eight temperature fractions using the
Thermal Optical Reflectance (TOR) combustion technique.
The analysis results in concentrations of organic carbon and
elemental carbon. Module D contains a Teflon filter ana-
lyzed by gravimetric analysis for PM10 mass concentrations.
[33] Total organic carbon mass concentrations are deter-

mined by multiplying measured organic carbon concentra-
tions from Module C by the molar correction factor of 1.4,
since the IMPROVE technique assumes that the average
organic molecule is 70% carbon [Sisler, 1996]. However,

Figure 3. Visibility simulations and observations for 1600 UTC, 11 July 1995. (a) CMAQ Model
Simulation, Mie theory, (b) NWS observations, and (c) CMAQ Model Simulation, mass reconstruction.
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recent research indicates that a correction factor of 1.4 may
be too low. Turpin and Lim [2001] suggest that 1.6 ± 0.2 is
the appropriate ratio of organic molecular weight per carbon
weight for urban aerosols, while 2.1 ± 0.2 more accurately
reflects the ratio for nonurban aerosols.
[34] The five species considered in the present evaluation

include sulfate, nitrate, organic carbon, and gravimetric
PM2.5 and PM10. (See Appendix A for caveats concerning
sulfate, nitrate, and organic carbon measurements).

4. Evaluation Results

4.1. Visibility

[35] The evaluation of CMAQ for visibility targeted a
widespread regional haze and ozone episode that developed
over the eastern half of the United States during 11–15 July

1995. This episode was associated with the westward
retrogradation of the Bermuda High, a semipermanent anti-
cyclone normally centered over the island of Bermuda. The
meteorological conditions during this 5-day period were
characterized by anomalously hot temperatures, light winds,
and general subsidence, which resulted in minimal cloud
cover and precipitation. These conditions, detailed by Sea-
man and Michelson [1995], were conducive to the forma-
tion of visibility impairing particles.
4.1.1. NWS Data
[36] Plots of the observed visibility data at 1600 UTC for

three days of this 5-day episode appear in Figures 3 through 5.
In order to produce a spatial field comparable to CMAQ
output, data from the 139 observations were gridded on the
same 36-km grid as the model simulations. The eighty-one
(9 
 9) grid cells surrounding each observation station were

Figure 4. Visibility simulations and observations for 1600 UTC, 13 July 1995. (a) CMAQ Model
Simulation, Mie theory, (b) NWS observations, and (c) CMAQ Model Simulation, mass reconstruction.
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assigned the deciview value of that station. If a particular cell
contained information from more than one station, an
average deciview value was used. This simple method of
interpolation produced fairly smooth patterns, allowing for
regional-scale pattern comparison between observations and
CMAQ simulations.
[37] Panels b of Figures 3 through 5 depict the formation

and evolution of the large regional haze episode discussed
above. At the beginning of the episode (11 July), poorest
visibilities (>25 dv) are found from the southeastern United
States stretching northward into the Great Lake States.
Visibility degradation increases as the episode progresses
through 13 July, as poorest visibilities (>30 dv) are now
concentrated in three distinct areas: the Mid-Atlantic states,
the central Great Lakes, and an area encompassing Arkansas
and Mississippi. By 15 July, these three areas merge into

one large area stretching from the Mid-Atlantic to the Ohio
River Valley states.
4.1.2. CMAQ Mie Theory Simulation Results
[38] Comparison of CMAQ’s Mie theory simulation with

the observed spatial patterns reveals a reasonable amount of
agreement, as the model generally captures the main gra-
dients and areas of maximum/minimum visibility. Of spe-
cial note is the area of poor observed visibility (>25 dv) on
11 July (Figure 3) that is well-matched by model results as
an area of poor simulated visibility (>20 dv). One exception
to this agreement is found along the Atlantic Coast, stretch-
ing from New England to Georgia. Here, CMAQ simulates
the poorest visibility (40 dv) in an area where observed
visibility is considerably better (20–30 dv). Some of this
discrepancy can be attributed to the fact that much of this
area is offshore and therefore void of observations.

Figure 5. Visibility simulations and observations for 1600 UTC, 15 July 1995. (a) CMAQ Model
Simulation, Mie theory, (b) NWS observations, and (c) CMAQ Model Simulation, mass reconstruction.
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[39] CMAQ simulations for 13 July (Figure 4) capture
the general evolution of the episode. Two of the three areas
of greatest visibility degradation (the Mid-Atlantic states
and the central Great Lakes) identified by the observations
are indeed depicted by the model. The simulation, how-
ever, missed the third area encompassing Arkansas and
Mississippi. The merger of the three observed areas of
visibility degradation by 15 July (Figure 5) is only partially
captured by the model. While the general outline and
positioning of the large haze ‘‘blob’’ is depicted in the
model output, its center is much cleaner than indicated by
the observations.
[40] While spatial pattern comparison is important, it

needs to be augmented by calculation of summary statistics
of the observed data (recorded at the 139 sites) and CMAQ
simulation results in the grid cells associated with those
sites. Both daily and composite statistics for 1600 UTC,
11–15 July 1995 are given in Table 2, as are the equations
for the normalized mean error (NME) and normalized mean
bias (NMB).
[41] One common feature seen in Table 2 is the under-

prediction of the Mie theory simulations. The mean bias
ranges from �5.0 dv (NMB = �17.7%) on 14 July to �6.7
dv (NMB = �25.8%) on 11 July, with an average of �5.9
dv (NMB = �21.7%) for the 5-day period. Some of this
negative bias is attributable to the previously discussed
limitations in the NWS data set; a station having too few
targets for determining large visual ranges (Vr) leads to
deciview overestimation (i.e., underestimated visibilities,
especially in good visibility conditions). The mean error
ranges from 6.2 dv (NME = 22.8%) on 13 July to 8.0 dv on
11 July (NME = 30.9%) and 15 July (NME = 26.1%). The
mean error averages 7.0 dv (NME = 25.4%) for the 5-day
simulation period.
[42] Correlation coefficients were also calculated between

the Mie theory simulations and the observations, with r2s
ranging from 0.10 on 11 July to 0.48 on 13 July. Figure 6a
is a scatterplot of Mie theory output versus observations

(n = 615) for the entire simulation, which had an r2 of
0.25. For reference, 1:1 and 2:1 ratio lines are presented
along with the best-fit regression line. The artificial
stratification of the NWS observations is obvious in this
figure, as is CMAQ’s tendency to underestimate the deci-
views (i.e., overestimate visibility). Despite these limita-
tions, over 90% of the simulated values fall within a factor
of two of the observations.
4.1.3. CMAQ Mass Reconstruction Simulation
[43] The spatial patterns of the mass reconstruction sim-

ulation are very similar to those produced by Mie theory.
There is, however, a consistent discrepancy in magnitude
between the two simulation techniques (see Table 2), with
the mass reconstruction method averaging 3.9 dv lower than
Mie theory. The mean bias ranges from �9.0 dv (NMB =
�32.0%) on 14 July to �10.2 dv (NMB = �39.4%) on 11
July, averaging �9.8 dv (NMB = �35.5%) for the 5-day
period. The mean error varies from 9.2 dv (NME = 32.6%)
on 14 July to 10.5 dv (NME = 34.5%) on 15 July, with an
average of 10.0 dv (NME = 36.2%) for the five days.
[44] Correlation calculations between the mass recon-

struction simulations and observations produced r2s ranging
from 0.11 on 11 July to 0.45 on 13 July. Figure 6b is a
scatterplot of reconstruction method output versus observa-
tions (n = 615) for the entire simulation, which had r2 =
0.24. Figure 6b is very similar to Figure 6a. Approximately
85% of the mass reconstruction simulated values fall within
a factor of two of the observations, down slightly from Mie
theory calculations.
[45] A separate comparison involving the two visibility

modeling techniques, Mie theory versus mass reconstruc-
tion, revealed excellent agreement, as seen in Figure 6c. The
r2s for the two simulations vary between 0.94 (12 July) to
0.98 (14 July). This consistency is encouraging, given that
the model calculates the results from each method inde-
pendently. Although both methods use the same species
concentrations calculated by CMAQ, the Mie calculations
are based on theory and use aerosol size distribution

Table 2. Summary Statistics for Visibility Evaluation at 1600 UTC, 11�15 July 1995

Time Period

Visibility, dv r2

Mean Mean Error Normalized Mean Errora Mean Bias Normalized Mean Biasa Obs Mie Recon

11 July (n = 122) obs 26.0 – – – – 1.00 0.10 0.11
Mie 19.3 8.0 30.9% �6.7 �25.8% 0.10 1.00 0.96
recon 15.7 10.3 39.7% �10.2 �39.4% 0.11 0.96 1.00

12 July (n = 128) obs 27.2 – – – – 1.00 0.22 0.19
Mie 21.5 6.5 23.7% �5.7 �21.0% 0.22 1.00 0.94
recon 17.5 9.8 36.0% �9.8 �35.9% 0.19 0.94 1.00

13 July (n = 128) obs 28.3 – – – – 1.00 0.48 0.45
Mie 22.9 6.2 22.8% �5.3 �19.6% 0.48 1.00 0.96
recon 18.5 9.9 36.2% �9.8 �34.7% 0.45 0.96 1.00

14 July (n = 123) obs 28.2 – – – – 1.00 0.43 0.43
Mie 23.1 6.4 22.8% �5.0 �17.7% 0.43 1.00 0.98
recon 19.2 9.2 32.6% �9.0 �32.0% 0.43 0.98 1.00

15 July (n = 114) obs 27.6 – – – – 1.00 0.21 0.18
Mie 20.9 8.0 26.1% �6.6 �21.7% 0.21 1.00 0.96
recon 17.6 10.5 34.5% �10.0 �36.1% 0.18 0.96 1.00

11�15 July (n = 615) obs 27.4 – – – – 1.00 0.25 0.24
Mie 21.6 7.0 25.4% �5.9 �21.7% 0.25 1.00 0.96
recon 17.7 10.0 36.2% �9.8 �35.5% 0.24 0.96 1.00

a
NME ¼

PN

i¼1

jmi�oi j

PN

i¼1

oi


 100%; NMB ¼

PN

i¼1

mi�oið Þ

PN

i¼1

oi


 100%, where mi is the model estimate at station i, oi is the observed value at station i, and N is the number of

model-observed pairs for all valid monitoring data.
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parameters determined by CMAQ, whereas the mass recon-
struction method originated from empirical measurements
that make a priori assumptions regarding aerosol size
distribution.

4.2. Speciated Data Evaluation

[46] The evaluation of CMAQ for speciated data targeted
the month of June 1995. A cursory examination of mete-
orological conditions for the month revealed warmer than

Figure 6. Scatterplots for visibility evaluation at 1600 UTC, 11–15 July 1995. (a) Mie theory, (b) Mass
reconstruction, and (c) Mie theory versus mass reconstruction.

Table 3. Summary Statistics for Speciated Aerosol Data

Species Source
Mean,
mg m�3

Mean Error,
mg m�3

Normalized
Mean Errora

Mean Bias,
mg m�3

Normalized
Mean Biasa r2

sulfate (n = 129) CMAQ 4.98 1.75 36.2% 0.15 3.1% 0.63
IMPROVE 4.83

nitrate (n = 129) CMAQ 0.21 0.33 104.3% �0.10 �33.1% 0.01
IMPROVE 0.31

PM2.5 (n = 129) CMAQ 9.06 5.00 38.5% �3.90 �30.1% 0.55
IMPROVE 12.96

PM10 (n = 129) CMAQ 13.74 9.85 50.8% �5.66 �29.2% 0.13
IMPROVE 19.40

OC (n = 112) CMAQ 1.53 0.94 40.6% �0.78 �33.7% 0.25
IMPROVE 2.32

aNME ¼
PN

i¼1

jmi�oi j

PN

i¼1

oi


 100%;NMB ¼
PN

i¼1

mi�oið Þ

PN

i¼1

oi


 100%, where mi is the model estimate at station i, oi is the observed

value at station i, and N is the number of model-observed pairs for all valid monitoring data.
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Figure 7. Scatterplots for speciated concentrations (mg/m3), June 1995. (a) sulfate, (b) nitrate, (c) PM2.5,
(d) PM10, and (e) organic carbon.

MEBUST ET AL.: MODELS-3 CMAQ MODEL AEROSOL COMPONENT, 2 AAC 4 - 11



normal conditions (+1 to 2�C) in the upper half of the model
domain and slightly cooler than normal conditions (0 to
�1�C) in the southern half. Precipitation was above normal
from Florida northward into the Virginias and westward into
Kansas and Oklahoma. Below normal precipitation was
observed in New England, the Great Lakes states, and the
southwest portion of the domain.
[47] Given the IMPROVE network’s twice-a-week sam-

pling schedule in June 1995, speciated aerosol data existed
for the following eight days in June: 3, 7, 10, 14, 17, 21, 24,
and 28, providing a maximum of 144 observations (18
stations, 8 days). As discussed earlier, the IMPROVE data
represent 24-hour averages. Since CMAQ output is hourly,
24-hour model averages were calculated for comparison
against the IMPROVE observations. Because so few obser-
vations are available, spatial plots of the observations are

not practical. Therefore, this segment of the evaluation will
focus on scatterplots and the examination, across space and
time, of the normalized mean error (NME) and normalized
mean bias (NMB) associated with each evaluated species.
4.2.1. Sulfate
[48] Examination of Table 3 and Figures 7 through 9

reveals that CMAQ simulates sulfate (SO4) considerably
better than the other species, which are consistently under-
predicted. The mean bias is only 0.15 mg/m3 (NMB =
3.1%). Across time, the NMB is within ±25% on all but
one day (24 June), while across space it is within ±25% at
15 of the 18 sites. The mean error is considerably larger
than the mean bias, however, at 1.75 mg/m3 (NME =
36.2%). The NME is within 50% on all but two days (24
and 28 June) and at all but two locations (ACAD and
MOOS). A regression analysis of simulated versus

Figure 8. Temporal plots of normalized mean biases (%) and normalized mean errors (%), June 1995.
(a) sulfate, (b) nitrate, (c) PM2.5, (d) PM10, and (e) organic carbon.
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observed sulfate concentrations, which produces r2 = 0.63,
appears in Figure 7. The best fit regression line is very
close to the 1:1 line, with over 80% of the simulated
sulfate concentrations falling within a factor of two of the
observations.
[49] The relative success of CMAQ in simulating sulfate

is not surprising, given its derivation from RPM and RADM
(see section 2.2). These models, designed to address the
acid rain problem, have provided an excellent foundation
for CMAQ.
4.2.2. Nitrate
[50] In contrast to sulfate comparisons, examination of

Table 3 and Figures 7 through 9 reveals a very poor level of
agreement between simulated and observed concentrations

of nitrate (NO3), as CMAQ greatly underpredicts nitrate
concentrations. The mean bias is �0.10 mg/m3 (NMB =
�33.1%). Across time, the NMB is within ±25% on only
three days and at only one location (SHRO). The mean
error, at 0.33 mg/m3, is larger in magnitude than the mean
bias and the NME = 104.3%. The NME is greater than 50%
on all days and at all but one location; in fact, the NME
exceeds 100% on four days and at two locations. This
overall lack of agreement is also reflected in the regression
analysis, which produces r2 = 0.01, and the fact that less
than 20% of the simulated nitrate concentrations fall within
a factor of two of the observations.
[51] A preliminary investigation into CMAQ’s poor per-

formance with respect to nitrate suggests that ammonia

Figure 8. (continued)
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emissions based on the National Emissions Inventory (NEI)
[U.S. Environmental Protection Agency, 2000a] are prob-
ably too low for summer conditions (A. Gilliland et al.,
Seasonal NH3 emissions estimates for the eastern United
States based on NH4

+ concentrations, submitted to Journal
of Geophysical Research, 2003). Emissions from the NEI
only provide annually averaged ammonia emission values,
but seasonal variability is expected, due to the nature of
ammonia emissions. If the ammonia emissions are indeed
too low, they would no doubt contribute to the nitrate
underprediction seen in the model output for June and July
1995. Efforts are currently underway to determine more
realistic ammonia emission estimates [Gilliland et al., 2001]
that will eventually allow a more accurate model evaluation
with respect to nitrate.
4.2.3. PM2.5

[52] Due in part to the fact that a large component of
PM2.5 is sulfate, the level of agreement seen in the PM2.5

evaluation is fairly comparable to the sulfate evaluation, as
shown in Table 3 and Figures 7 through 9. The mean bias is
�3.90 mg/m3 (NMB = �30.1%). Across time, the NMB is
within ±25% on only two days, while across space the
NMB is within ±25% at only 3 of the 18 sites. The mean
error, at 5.00 mg/m3, is larger in magnitude than the mean
bias and the NME = 38.5%. The NME is within 50% on all
but one day (28 June) and at all but four locations (ACAD,
BOWA, DOSO, and LYBR). The regression analysis of
simulated versus observed PM2.5, which produces an r2 of
0.55, shows that over 75% of the simulated PM2.5 concen-
trations fall within a factor of two of the observations.
4.2.4. PM10

[53] Comparisons between simulated and observed PM10

concentrations (Table 3 and Figures 7 through 9) reveal that
CMAQ underpredicts concentrations, resulting in a mean
bias of �5.66 mg/m3 (NMB = �29.2%). Across time, the
NMB is within ±25% on only two days (17 and 24 June)
and is negative on all but two days (14 and 28 June). Across
space, the NMB is within ±25% at only three locations

(GRSM, SHEN, and SIPS) and is negative at all except two
locations (SHEN and WASH). The mean error of 9.85 mg/m3

is larger in magnitude than the mean bias and the NME =
50.8%. The NME is greater than 50% on all except three
days and at half of the sites. This overall underprediction
and lack of agreement is also reflected in the regression
analysis, which produces an r2 of 0.13. Note, however, that
nearly 75% of the simulated PM10 concentrations do at least
fall within a factor of two of the observations.
[54] It is obvious from this evaluation that processes in

the CMAQ aerosol module involving PM10 need better
representation. Efforts are underway to more accurately
model wind-blown dust episodes and also to include the
generation and transport of sea salt aerosols, which can
affect coastline air quality during onshore flow. Emissions
inventories are also undergoing improvement to correct
discrepancies. The results of these enhancements should
allow for more accurate PM10 modeling.
4.2.5. Organic Carbon
[55] As with most of the other species evaluated here,

Table 3 and Figures 7 through 9 reveal that CMAQ system-
atically underpredicts concentrations of organic carbon
(OC), resulting in a mean bias of �0.78 mg/m3 (NMB =
�33.7%). Across time, the NMB is within ±25% on only
two days (10 and 24 June) and is negative on all days.
Across space, the NMB is within ±25% at only three
locations (GRSM, SHEN, and SIPS) and it is negative at
all but two locations (SHEN and WASH). The mean error of
0.94 mg/m3 is comparable in magnitude to the mean bias
and the NME = 40.6%. The NME is within 50% on all days
except one (17 June) and at 13 of the 18 locations. The
underprediction and lack of agreement seen for organic
carbon is also apparent in the regression analysis, which
produces an r2 of 0.25. However, nearly 80% of the
simulated organic carbon concentrations fall within a factor
of two of observations.
[56] The lack of agreement between simulated and

observed organic carbon concentrations results, in part,

Figure 8. (continued)
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from the crude physical representation of organics within
the CMAQ aerosol component. Improvements to this rep-
resentation are underway, following Schell et al. [2001].
Further difficulties arise from incomplete knowledge
regarding organic aerosol constituents, making it difficult
not only to adequately model organic species, but to
compare model results with observations.

5. Summary

[57] An initial evaluation of the Models-3 Community
Multiscale Air Quality model (CMAQ) aerosol component
reveals that CMAQ varies in its ability to simulate observed
visibility indices and aerosol species concentrations. The

visibility evaluation, using NWS observations from 139
airports, coincided with an air stagnation event that occurred
during 11–15 July 1995, while the aerosol species evalua-
tion used observations of sulfate, nitrate, PM2.5, PM10, and
organic carbon, gathered from 18 stations of the IMPROVE
network during June 1995. This initial evaluation has
helped reveal those processes within CMAQ’s aerosol
module that require improvement.

5.1. Visibility Evaluation

[58] The visibility evaluation compares the NWS obser-
vations against CMAQ simulations, using both Mie effi-
ciency theory approximation and the IMPROVE mass
reconstruction technique. Comparison of model results with

Figure 9. Spatial plots of normalized mean biases (%) and normalized mean errors (%), June 1995.
(a) Sulfate, (b) nitrate, (c) PM2.5, (d) PM10, and (e) organic carbon.
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observed spatial and temporal patterns of visibility reveals
reasonable agreement, as both techniques capture main
visibility patterns, including gradients, maxima and min-
ima. Specifically, CMAQ captures the poor visibility expe-
rienced by the Ohio Valley and Mid-Atlantic regions
throughout the stagnation period, as well as the good
visibility seen in the western portion of the model domain.
Also captured by the model was the sudden decline in
visibility observed in the Great Lakes states, especially
Michigan, on 13 July.
[59] Although basic spatial patterns were captured by the

techniques, both techniques systematically underpredict vis-
ibility degradation (i.e., overpredict visibility). The mean
bias for the 5-day Mie theory simulation is �5.9 dv (NMB =
�21.7%), while the mean error is 7.0 dv (NME = 25.4%).
For the mass reconstruction technique the mean bias is �9.8
dv (NMB = �35.5%) and the mean error is 0.0 dv (NME =
36.2%). Regression analyses confirm these findings, while
revealing modest levels of agreement between the observa-
tions and the Mie theory (r2 = 0.25) and the mass recon-
struction (r2 = 0.24) simulations. Despite the modest
agreement, over 90% of the Mie theory simulated values
and 85% of the mass reconstruction simulated values fall
within a factor of two of the NWS observations.
[60] A number of error sources contribute to the systematic

low bias seen in CMAQ visibility calculations. The previ-
ously discussed artificial stratification apparent in the NWS
observations contributes to some of the discrepancy. The
evaluation of CMAQ visibility calculations is also somewhat
hampered by the fact that, due to uncertainty in coarse
particle emissions, the aerosol module does not account for
the contribution of coarse mode particles to extinction.

5.2. Speciated Data Evaluation

[61] The speciated aerosol evaluation compares IMPROVE
observations against CMAQ concentrations for five species
(sulfate, nitrate, PM2.5, PM10, and organic carbon) and
reveals that, with the exception of sulfate, the model

systematically underpredicts aerosol concentrations by
30%.
[62] Specifically, the mean bias for sulfate is only 0.15

mg/m3 (NMB = 3.1%), while the mean error is 1.75 mg/m3

(NME = 36.2%). Regression analysis reveals an r2 of 0.63,
with over 80% of the simulated concentrations falling
within a factor of two of the observations. As noted
previously, CMAQ’s relative success in simulating sulfate
is due in part to its derivation from earlier computer models
designed to simulate acid rain.
[63] In contrast to sulfate, a very poor level of agreement

is found between simulated and observed concentrations of
nitrate, as revealed by the mean bias (�0.10 mg/m3 (NMB =
�33.1%)) and mean error (0.33 mg/m3 (NME = 104.3%)).
This lack of agreement is also reflected in the regression
analysis (r2 = 0.01) and the fact that less than 20% of the
simulated nitrate concentrations fall within a factor of two
of the observations. As discussed in section 4.2, recent
research suggests that the ammonia emissions used for these
model simulations were most likely too low for summer
conditions. Ongoing efforts to correct the emissions should
eventually lead to more realistic simulations of nitrate
concentrations. In addition, a heterogeneous N2O5 reaction
has been added to the most recent version of CMAQ’s
aerosol module, leading to a more realistic treatment of
nitrate concentrations.
[64] Due in part to the fact that a large component of

PM2.5 is sulfate, the level of agreement seen in the PM2.5

evaluation is fairly comparable to the sulfate evaluation,
although the mean bias at �3.90 mg/m3 (NMB = �30.1%)
and mean error at 5.00 mg/m3 (NME = 38.5%) are larger.
The regression analysis (r2 of 0.55) reveals that over 75% of
the simulated PM2.5 concentrations fall within a factor of
two of the observations.
[65] CMAQ’s propensity for underprediction continues

with PM10 concentrations, as the mean bias is �5.66 mg/m3

(NMB = �29.2%). The mean error, at 9.85 mg/m3 (NME =
50.8%), is almost twice as large as the mean bias – a
characteristic also revealed in the regression analysis (r2 of
0.13). Note, however, that nearly 75% of the simulated
PM10 concentrations do fall within a factor of two of the
observations. Ongoing efforts to improve CMAQ’s ability
to simulate PM10 concentrations include the addition of
both wind-blown dust episodes and the generation and
transport of sea salt aerosols to the aerosol module. Emis-
sions inventories are also undergoing improvement and the
issue of wildfire emissions is being examined.
[66] CMAQ simulations of organic carbon are likewise

too low, resulting in a mean bias of �0.78 mg/m3 (NMB =
�33.7%). The mean error of 0.94 mg/m3 is comparable in
magnitude to the mean bias and the NME = 40.6%. The
underprediction and lack of agreement seen for organic
carbon is also seen in the regression analysis, which
produces an r2 of 0.25. However, nearly 80% of the
simulated organic carbon concentrations fall within a factor
of two of observations. The CMAQ aerosol component has
recently been updated to include an improved representation
of organic aerosols [Schell et al., 2001] and testing of the
new aerosol module is underway.
[67] Inadequacies in evaluation data sets have also been

identified, including underestimation of visibility in the
NWS data and measurement uncertainties in the IMPROVE

Figure 9. (continued)
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data. Fortunately, the EPA has recently implemented the
National PM2.5 Monitoring Network, consisting of mass
monitoring (1100 sites), routine chemical speciation (300
sites) and supersite characterization. These network meas-
urements will eventually produce a valuable database,
allowing a more thorough evaluation of the CMAQ model.

Appendix A

[68] The IMPROVE network samples sulfur-containing
aerosols in two different ways [Malm et al., 1994]. The first
method, PIXE analysis on the module ATeflon filter, yields
sulfur concentration measurements, [S]. Because the molec-
ular weight of sulfate is three times that of sulfur, calculat-
ing 3[S] yields sulfate measurements. The second method,
ion chromatography of the module B nylon filter, produces
sulfate ion measurements directly. However, there is some
concern that, although the module B denuder presumably
removes SO2 gas [Malm et al., 1994], unremoved SO2 may
adsorb onto the nylon filter and introduce error into the
sulfate ion measurements [UC-Davis, 1995]. To address this
concern, Malm et al. [1994] compared IMPROVE sulfate
measurements against sulfate predictions using 3[S] calcu-
lations. Their resulting analysis indicated excellent agree-
ment between sulfate and 3[S] concentrations, with a
regression line slope of 1.085 and r2 = 0.98. Still, Malm
et al. [1994] chose to use the 3[S] method in their subse-
quent analyses because sulfur measurements are more
precise than those for sulfate. However, information from
the IMPROVE web site (see http://vista.cira.colostate.edu/
improve/Data/DataQuery/SO4_NO3_replacement.htm)
reveals the following: ‘‘The sulfur measurements from the
Module A Teflon were underestimated at some eastern U.S.
sites, primarily during the summers of 1992–1995 on days
with the highest sulfur loadings coinciding with high
humidity. This problem was rectified by increasing the size
of the Teflon filters at affected sites (Table 1). For derived
values in the IMPROVE database the sulfate ion measure-
ment from the Module B filter is used instead of the Sulfur
*3 estimate of sulfate ion mass from module A for time
periods before the Teflon filter size was increased at the
sites listed below (Table 1).’’
[69] Information from Table 1 on the IMPROVE web

page listed above revealed that, of the 18 IMPROVE sites
used in the current analysis, 11 had their filter size increased
prior to June 1995 and data from a 12th site exhibited no
evidence of S underestimation, leaving 6 sites with monitors
potentially having the sulfur measurement problem. Regres-
sion analysis of the June 1995 data used here revealed
excellent agreement between sulfate and 3[S] measure-
ments, with r2 = 0.98. Given not only this level of agree-
ment, but also the fact that a majority of the data came from
sites unaffected by the sulfur measurement problem, the
3[S] data were analyzed for this evaluation.
[70] The IMPROVE sampling method for particle nitrate

uses an acidic vapor denuder followed by a nylon substrate
for measuring particle nitrate [Malm et al., 1994]. If nitric
acid is not properly removed from the sample stream, it may
be misinterpreted as particle nitrate, resulting in inflated
particle nitrate mass concentrations [Ames and Malm,
2001]. Another complicating factor is that nitrates volatilize
during sampling [UC-Davis, 1995].

[71] According to Chow et al. [2001], the definition of
organic carbon depends on the analysis methods used to
measure it. Different methods produce different results. Like
nitrate, organic species also volatilize during sampling [UC-
Davis, 1995].
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